
N89 - 1985 6
Knowledge Acquisition for Case-Based Reasoning Systems

Cliristophcr I<. Ricslm~k
Dept. of Computer Scicncc

Yale University
New Haven, CT 06520

Cognitivc Systcms, Inc.
New Haven, CT 06511

Abstract
Case-based reasoning (CBR) is a simple idea: solve new
problems by adapting old solutions to similar problems.

rule-based reasoning: rules are not combined blindly in a
search for solutions, solutions can be explained in terms

more cases. To explain why it came to the conclusions it
did, the reasoner would show the cases from which it built
its solution,

To make the utility of the case-based approach clear,

similar to a given situation, but did no reasoning at all.
For example, a tax advisor that showed me examples of

The CBR approach Offers several potential advantages Over consider a case-based that only retrieved cases

of concrete examples, and Performance Can improve au- tax forms filled out by people in ,.ircumstances very sim- tomatically as new problem are and added to the ilar to mine would be very helpful, even though it didn’t
try to do my taxes for me.

in this case
knowledge from expert to user.

A tax expert could extend

as a fairly direct conduit, tranferring

This is the ideal situation, but there is one major prob-

dexing the cases so that the right cases are retrieved, The
features that make one case similar to another are usu-
ally not explicitly in the input data, but are inferred using
domain-specific knowledge. The domain expert has to add
this knowledge to the system along with the cases.

Based on basic research in case-based reasoning 111,
Cognitive Systems Inc. is developing a case-based reason-
ing shell whose primary function is to help a domain expert
enter and organize a case library. In this paper we will de-
scribe the kinds of features that have been found useful for
knowledge acquisition in case-based reasoner.

case library.

ment to the real world requires smooth interfaces for get-
ting knowledge from experts. We describe the basic ele-
ments of an interface for acquiring three basic bodies of

library of problems and their solutions, the analysis rules
that flesh out input problem specifications so that relevant
cases can be retrieved, and the adaptation rules that adjust
old solutions to fit new problems.

Introduction
Case-based reasoning means reasoning from Prior exam-
PIes. A case-based reasoning (CBRS) has a case
library, containing 100% 1000s O r more cases. Each case
describes a problem and a solution to that problem. The
reasoner solves new problems by adapting relevant cases
from the library.

Case-based reasoning is an alternative to rule-based
reasoning. A rule-based reasoner has a large library of
rules of the form, “IF A THEN B.” These are chained to-
gether in various combinations to solve problems. A rule-
based system will be flexible and produce nearly optimal
answers, but it Will be Slow and Prone to error. A case-
based system will be restricted to variations on known sit-
uations and produce approximate answers, but it will be
quick and its answers will be grounded in actual experi-
ence. In very limited domains, the trade-offs favor the
rule-based reasoner, but the balance changes as domains
become more realistically complex. Realistic domains in-
volve a large number of number of rules, many of which are
quite difficult t o formalize properly, linked into long, tenu-
ous chains of reasoning. With enough pre-stored solutions
in a CBRS, there is almost always short path between the
input case and the retrieved solution.

One important potential advantage of case-based rea-
soning is that human expertise seems more like a library
of past experience than a set of rules. Hence cases should
better support knowledge transfer (communication of ex-
pertise from domain experts to system) and explanation
(justification of solution from system to domain experts).
TO increase the reasoner’s knowledge, an expert would add

Moving CBR from the university research environ- the system simply by adding examples. The system

that any case-based reasoner requires: the lem that has to be solved when building case library: in-

A Case-Based Reasoning Shell
one way to look at a CBRS is to contrast it with a
database management system (DBMS). ~h~ caSeS are like
records in the database. (ln fact, in application areas
where databases exist, e.g., financial domains, cases really
are records.) In a standard DBMS, records are retrieved
with queries, such as “List all employee records where the
salary field is Over $50,000 and the position field is not

The DBMS retrieves all records that satisfy
the constraints of the query. T~ do this, a database ad-
ministrator in advance has organized the database, split-
ting different kinds of information into different files, and
telling the DBMS to create indices for certain fields of cer-
tain records. For example, an employee database might
be split into a file of employee and ID numbers, in-
dexed by names, a file of personal information about each
employee, e.g., employee ID, home address, age, and SO

on, indexed by employee ID, and a file of payroll informa-
tion, also indexed by ID. With modern query languages,
the user doesn’t have to know how information is actually
split up, although these choices will make queries

A case-based reasoning system differs from a DBMS
in two fundamental ways, First, a CBRS query is simply a

than others.

289

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 1: On-Screen Input Form @Cognitive Systems, Inc.
1988

partially filled-in record, e.g., a tax form with personal and
income information filled in, a loan application with the
loan request and income information filled in, or a battle
situation assessment form. The query is not a pattern of
constraints, such as "greater than $50,000", but a concrete
description of some current situation. There is no query
language to learn.

Second, the CBRS retrieves cases by best partial
match. Retrieved cases usually do not match the iuput
exactly. Instead, they are the cases that are closest to the
input query, based on domain-specific information about
what matters and what doesn't. In a Normal DBMS,
records either match the query pattern or they don't. If a
user wants to find records similar to a particular case, the
user has to form a query pattern, replacing particular val-
ues with ranges of possible values. The user has to know
what's in the database, what extra fields to calculate, how
to replace particular input values with ranges, and so on.
Example-based interfaces, such as Query-by-Example 121,
make it easier to generate query patterns, but they still do
not allow a user to simply enter a description of the cur-
rent situation and let the system take care of everything
else.

To use a CBRS, a user enters the current case, by
filling out an on-screen form that, ideally, mimics exactly
forms the user is already familiar with. Figure 1 shows
an example of a battlefield intelligence estimate form that
can be filled in on-screen in Cognitive System's shell-based
battlefield advisor demo.

The CBRS application then retrieves forms describ-
ing similar cases. These retrieved forms contain additional
fields, called output fields, indicating actions taken and
outcomes observed in those previous situations. Armed
with these exemplars, the user can make an intelligent
choice about what to do in the current situation, and, op-
tionally, add the new case to the library for future refer-
ence.

Knowledge Acquisition
To determine best matches, a CBRS has to know how to

infer values for internal fields that a user would not
be expected to input, e.g., the debt to income ratio in
a loan application, or the attacker to defender ratio in
a battle situation
relate different field values to each other, e.g., incomes
fall into brackets for tax purposes, and a prepared
defense is closer to a fortified defense than it is to a
hasty defense in a battle situation
rank different fields as more or less important in de-
termining best matches, e.g., income is more impor-
tant than name for tax advice purposes, and strength
ratios are more important than absolute sizes in as-
sessing battles

The job of the Domain Expert Interface component
of the Case-Based Reasoning Shell is to enable a domain
expert, with little or no programming knowledge, to add
these three kinds of knowledge, plus cases, of course, to
form a case library that, in conjunction with the Shell,
forms a CBRS application usable by end users.

The Domain Expert Interface, by necessity, is some-
what more complicated than the end user interface, but,
by using ideas from DBMS interfaces and taking advantage
of the concrete, real-world-based nature of case-based rea-
soning, it is still possible to have an interface that is much
simpler and easier to use than those commonly found in
rule-based expert systems.

For example, adding new cases to the case library is
simply a matter of filling out the same forms that the end
user sees. The only difference is that the domain expert
also fills in the output fields. For example, in the bat-
tle assessment domain, the domain expert would fill in
not only the initial battle situation, but also the battle
outcomes, post-battle analyses of why things happened as
they did, graphical annotations, and so on. If an on-line
database already exists for a domain, the shell can convert
the database records to cases, so that the domain expert
just has to add any output fields not included in the orig-
inal database, and organize the cases, as described below.
For example, the Quantified Judgment Model (QJM) bat-
tle database, developed at Data Memory Systems Incorpo-
rated, was used to initialize the case library for Cognitive
Systems' battlefield advisor.

Cognitive Systems' CBR Shell provides the domain
expert with two interfaces to assign relative importances to
fields in a case. One interface allows the expert to "color"
the fields of the input form, where each color represents a
different level of importance. The other interface, present
when different cases are being compared on-screen, lists
fields in order or importance, and allows the expert to drag
fields up or down, to fine-tune the relative rankings. Fur-
thermore, the Shell can assign an initial set of importance
levels to fields, by looking at which cases have similar val-
ues in their output fields. Our initial experience suggests
that field importances are hard for experts to determine,
and not as robust for determining case similarities as the
other two kinds of information described next. The ini-
tial values assigned by the Shell are usually best left as is,
except in special circumstances.

To specify how different field values relate to each
other, e.g., to allow the expert to say that a prepared de-

.

290

ORIGINAL PACE IS
OF POOR QUALETY

Figure 2: Abstraction Editor Screen @Cognitive Systems,
Inc. 1988

fense is closer to a fortified defense than to a hasty one, the
expert uses a graphical abstraction hierarchy editor, similar
to those found in other AI shells such as KEE and ART [3].
Each field in a form has its own hierarchy of values, since
the values, especially if they are numbers, might mean dif-
ferent things in different fields. The hierarchy is initialized
to a simple list of all the values seen in that field in the
entire case library. The domain expert groups these val-
ues together to form the hierarchy. Thus, in the ficid for
defensive posture, the expert might group prepared and
fortified defenses together as strong defenses, and group
strong and hasty defenses together as defenses. The closer
two values are grouped, the better they are considered to
match when the CBRS is looking for similar cases. Fig-
ure 2 shows an abstraction hierarchy screen for Cognitive’s
battlefield advisor.

Finally, to specify derived fields, e.g., to create a field
that is the attacker to defender strength ratio, the CBR
shell uses a graphic formula building interface similar to
that found in database systems such as Double Helix [4].
The expert selects various fields from the case form and
links them to arithmetic, comparison, and other kinds of
operation icons. Such an interface avoids problems with
syntactic errors, and lets the domain expert know what op-
tions are available at any time for constructing a formula.
Figure 3 shows a formula screen for Cognitive’s battlefield
advisor.

The usefulness of a CBRS of course depends on how
well it actually does in find similar cases. Therefore, the
center of interaction in the Domain Expert Interface is a
screen that displays, for a given test input case, the five
best matches that currently exist, given the current impor-
tances, hierarchies, and derived fields. The display uses a
“compare and contrast” columnar format listing the out-
put fields, followed by the fields ranked as most important.
If the expert sees cases being retrieved that he or she con-
siders very dissimilar to the input case, the expert can tell
from this display if truly similar cases are not matching
because certain field values are poorly grouped in their hi-
erarchies, or if an important combination of values is not
being calculated, or if some field of information is simply

4

Figure 3: Formula Editor Screen @Cognitive Systems, Inc.
1988

Case UIewec WM bottle dotoDose/Fllth Ulew -
Emst Ftvm Cases F I d d Nsm. Input Case R

Figure 4: Best Match Comparison Screen @Cognitive Sys-
t e m , Inc. 1988

missing from the database. Figure 4 shows a compare and
contrast screen for Cognitive’s battlefield advisor.

Conclusions
This paper has described the basic features of a knowledge
acquisition interface for a case-based reasoning shell. The
shell uses a form-filling metaphor for case entry, and a
graded match mechanism for displaying case similarity. A
domain expert organizes the library by specifying what
fields in a form are important, how well different values
of a field match each other, and what additional derived
fields have to be calculated to capture important non-input
features. The result of the domain expert’s efforts is a
case-based reasoning application that can take an input
situation and retrieve relevant cases from the case library
to assist a human decision maker or problem solver.

Acknowledgments
Basic research on case-based reasoning was funded in part
by the Air Force Office of Scientific Research under con-

29 1

tract F49620-82-K-0010. Application of Cognitive Sys-
tem’s Case-Based Reasoning Shell to the battlefield as-
sessment domain is being funded in part by the Defense
Advanced Research Projects Agency. The battlefield advi-
sor was built with Cognitive Systems’ case-based reasoning
shell, using Data Memory Systems’ Quantified Judgment
Model battle database. The screens shown in the figures
are copyrighted by Cognitive Systems, Inc.

~ References
1. IColodner, J., editor, Proceedings of the First Case-

Based Reasoning Workshop, Morgan ICaufmann Pub-
lishers, Inc., Los Altos, CA., 1988.

2. Ullman, J. D., Principles of Database Systems, Com-
puter Software Engineering, Computer Science Press,
Rockville, MD, second edition, 1982.

3. Gevarter, W., The nature and evaluation of commercial
expert system building tools, ZEEE Computer, 20(5),
May 1987, pages 24-41.

4. Hirschberg, G., Double helix or nothing, part 1, Ma-
cUser, 4(4), April 1988, pages 108-116.

292

